编辑实验 创建词条
人大经济论坛-经管百科

模拟退火算法 发表评论(0) 编辑词条

模拟退火算法(Simulate Anneal Arithmetic,SAA)

什么是模拟退火算法编辑本段回目录

  模拟退火算法(Simulate Anneal Arithmetic,SAA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解。模拟退火是S.Kirkpatrick, C.D.GelattM.P.Vecchi在1983年所发明。而V.?erny在1985年也独立发明此演算法。模拟退火算法是解决TSP问题的有效方法之一。

  模拟退火来自冶金学的专有名词退火。退火是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。

  模拟退火的原理也和金属退火的原理近似:将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火算法的模型[1]编辑本段回目录

  模拟退火算法可以分解为解空间、目标函数和初始解三部分。

  • 模拟退火的基本思想:
    • (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
    • (2) 对k=1,……,L做第(3)至第6步:
    • (3) 产生新解S′
    • (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
    • (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
    • (6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。
    • (7) T逐渐减少,且T->0,然后转第2步。

  算法对应动态演示图:

  Image:模拟退火算法.jpg

  • 模拟退火算法新解的产生和接受可分为如下四个步骤:
    • 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
    • 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
    • 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
    • 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

  模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

模拟退火算法的简单应用[1]编辑本段回目录

  作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码(1,…,n)代表。城市i和城市j之间的距离为d(i,j) i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。

  求解TSP的模拟退火算法模型可描述如下:

  解空间:解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w_1,w_2,\cdots,w_n),并记wn + 1 = w1。初始解可选为(1,……,n)

  目标函数:此时的目标函数即为访问所有城市的路径总长度或称为代价函数:f(w_1,w_2,,w_n)=\sum_{j=1}^{n}(w_j,w_{j+1})

  我们要求此代价函数的最小值。

  新解的产生 随机产生1和n之间的两相异数k和m,若k<m,则将

  (w_1,w_2,\cdots,w_k,w_{k+1},\cdots,w_m,\cdots,w_n)

  变为:

  (w_1,w_2,\cdots,w_m,w_{m-1},\cdots,w_{k+1},w_k,\cdots,w_n)

  如果是k>m,则将

  (w_1,w_2,\cdots,w_k,w_{k+1},\cdots,w_m,\cdots,w_n)

  变为:

  (w_m,w_{m-1},\cdots,w_1,w_{m+1},\cdots,w_{k-1},w_n,w_{n-1},\cdots,w_k)

  上述变换方法可简单说成是“逆转中间或者逆转两端”。

  也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。

  代价函数差:设将(w_1,w_2,\cdots,w_n)变换为(u_1,u_2,\cdots,u_n), 则代价函数差为:

  \triangle f=f(u_1,u_2,\cdots,u_n)-f(w_1,w_2,\cdots,w_n)=\sum_{j=1}^{n}d(u_j,u_{j+1})-\sum_{j=1}^{n}d(w_j,w_{j+1})

模拟退火算法求解TSP问题的伪程序[1]编辑本段回目录

  根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:

Procedure TSPSA:
 begin
  init-of-T; { T为初始温度}
  S={1,……,n}; {S为初始值}
  termination=false;
  while termination=false
   begin
    for i=1 to L do
      begin
        generate(S′form S); { 从当前回路S产生新回路S′}
        Δt:=f(S′))-f(S);{f(S)为路径总长}
        IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])
        S=S′;
        IF the-halt-condition-is-TRUE THEN
        termination=true;
      End;
    T_lower;
   End;
 End

  模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem)等等。

模拟退火算法的参数控制问题[1]编辑本段回目录

  模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:

  (1) 温度T的初始值设置问题。

  温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。

  (2) 退火速度问题。

  模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。

  (3) 温度管理问题。

  温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:

  T(t+1)=k\times T(t)

  式中k为正的略小于1.00的常数,t为降温的次数。

参考文献编辑本段回目录

  1. 1.0 1.1 1.2 1.3 蔡自兴《人工智能》[M]第五章 计算智能(2)
经管百科已经为您找到更多关于“模拟退火算法”的相关信息,点击查看>>

附件列表

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 模拟退火算法 TSP问题 Travelling Salesman Problem 互换 城市 控制 统计学 货郎担问题 V.?erny M.P.Vecchi C.D.Gelatt

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>