编辑实验 创建词条
人大经济论坛-经管百科

鞅定价方法 发表评论(0) 编辑词条

目录

鞅定价方法(Martingale Pricing Technique/martingale pricing theory/theory of martingale pricing)

鞅定价方法概述 编辑本段回目录

  HarrisonKreos (1979)提出了一种求解金融衍生产品的定价方法——鞅定价方法。在鞅定价方法下,证券的价格可由折现该产品未来现金流量得到,且期望值折现在风险中立下计算。鞅定价方法比随机微分方程简单,也不会涉及复杂的积分。许多随机微分方程不能求解的问题,鞅定价方法可轻易求解。

  股票价格的随机过程可以表示为:

  \frac{dS}{S}=\mu dt+\sigma dW^P

  WP 表示在概率测度P下的布朗运动。上述公式可以转化为风险中性概率测度Q下的随机过程:

  \frac{dS}{S}=rdt+\sigma dW^Q

  其中:dW^P=dW^Q-(\frac{\mu-r}{\sigma})dt

  比较上述两个公式可以发现,原来的μ已经被无风险利率r 取代,波动率σ 并未受到影响。

  在风险中性概率测度Q下,股票价格的动态过程变为:

  d lnS_t=(r-\frac{\sigma^2}{2})dt+\sigma\delta W^Q_T

  因此,相应的其动态过程可表示为:

  S_T=S exp(r-\frac{\sigma^2}{2})T+\sigma\delta W^Q_T

  在定价股票期权时,须计算EQ[ST | ST > K] ,它表示在到期日T,股价S_T大于执行价格K 的期望。

  利用Girsanov 定理,经过一系列推导,可以得到:

  EQ[ST | ST > K] = SErTN(d1)

  其中,N(d_1)=\int_{\infty}^{d_1}\frac{1}{\sqrt{2\pi}}e^{-X^2/2}dx标准正态分布的累积概率。

  计算出EQ[ST | ST > K] 后,然后再依据买、卖权以及其它相应的条件比较容易的得到股票期权的价格。

相关条目 编辑本段回目录

经管百科已经为您找到更多关于“鞅定价方法”的相关信息,点击查看>>

附件列表

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
2

标签: 鞅定价方法 Black-Scholes期权定价模型 二项期权定价模型 无风险利率 期权定价模型 正态分布 股票期权 金融衍生产品 风险中性定价理论 Kreos 随机微分方程

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>