模型判别 发表评论(0) 编辑词条
概述 编辑本段回目录
多变量信用风险判别模型是以特征财务比率为解释变量,运用数量统计方法推导而建立起的标准模型。运用此模型预测某种性质事件发生的可能性,及早发现信用危机信号,使经营者能够在危机出现的萌芽阶段采取有效措施改善企业经营,防范危机;使投资者和债权人可依据这种信号及时转移投资、管理应收帐款及作出信贷决策。目前国际上这类模型的应用是最有效的,也是国际金融业和学术界视为主流方法。概括起来有线性概率模型、Logit模型、Probit模型和判别分析模型。其中多元判别分析法最受青睐,Logit模型次之。
分析法的比较 编辑本段回目录
Logit模型是采用一系列财务比率变量来预测公司破产或违约的概率,然后根据银行、投资者的风险偏好程度设定风险警界线、以此对分析对象进行风险定位和决策。Logit模型与多元判别分析法的本质区别在于前者不要求满足正态分布,其模型采用Logistic函数。由于Logistic回归不假定任何概率分布,不满足正态情况下其判别正确率高于判别分析法的结果。
本词条由以下会员参与贡献
- 万山红 li>
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
收藏到:
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>