隐马尔可夫模型 发表评论(0) 编辑词条
什么是隐马尔可夫模型编辑本段回目录
隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。
在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。
图:隐马尔可夫模型状态变迁图(例子)
x — 隐含状态
y — 可观察的输出
a — 转换概率(transition probabilities)
b — 输出概率(output probabilities)]]
隐马尔可夫模型的历史编辑本段回目录
“隐马尔可夫模型”最初是在二十世纪六十年代后半期Leonard E.Baum和其它一些作者在一系列的统计学论文中描述的。HMM最初的应用之一是开始于二十世纪七十年代中期的语音识别。
在二十世纪八十年代后半期,HMM开始应用到生物序列尤其是DNA的分析中。从那时开始,在生物信息学领域它们已经变得无处不在。
隐马尔可夫模型的使用编辑本段回目录
HMM有三个经典(canonical)问题:
- 已知模型参数,计算某一特定输出序列的概率.通常使用forward算法解决.
- 已知模型参数,寻找最可能的能产生某一特定输出序列的隐含状态的序列.通常使用Viterbi算法解决.
- 已知输出序列,寻找最可能的状态转移以及输出概率.通常使用Baum-Welch算法以及Reversed Viterbi算法解决.
另外,最近的一些方法使用Junction tree算法来解决这三个问题。
隐马尔可夫模型的应用编辑本段回目录
具体实例编辑本段回目录
假设你有一个住得很远的朋友,他每天跟你打电话告诉你他那天作了什么.你的朋友仅仅对三种活动感兴趣:公园散步,购物以及清理房间.他选择做什么事情只凭天气.你对于他所住的地方的天气情况并不了解,但是你知道总的趋势.在他告诉你每天所做的事情基础上,你想要猜测他所在地的天气情况.
你认为天气的运行就像一个马尔可夫链. 其有两个状态 "雨"和"晴",但是你无法直接观察它们,也就是说,它们对于你是隐藏的.每天,你的朋友有一定的概率进行下列活动:"散步", "购物", 或 "清理". 因为你朋友告诉你他的活动,所以这些活动就是你的观察数据.这整个系统就是一个隐马尔可夫模型HMM.
你知道这个地区的总的天气趋势,并且平时知道你朋友会做的事情.也就是说这个隐马尔可夫模型的参数是已知的.你可以用程序语言(Python)写下来:
states = ('Rainy', 'Sunny') observations = ('walk', 'shop', 'clean') start_probability = {'Rainy': 0.6, 'Sunny': 0.4} transition_probability = { 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3}, 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6}, } emission_probability = { 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5}, 'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1}, }
在这些代码中,start_probability
代表了你对于你朋友第一次给你打电话时的天气情况的不确定性(你知道的只是那个地方平均起来下雨多些).在这里,这个特定的概率分布并非平衡的,平衡概率应该接近(在给定变迁概率的情况下){'Rainy': 0.571, 'Sunny': 0.429}
<
transition_probability
表示基于马尔可夫链模型的天气变迁,在这个例子中,如果今天下雨,那么明天天晴的概率只有30%.代码emission_probability
表示了你朋友每天作某件事的概率.如果下雨,有 50% 的概率他在清理房间;如果天晴,则有60%的概率他在外头散步.
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
标签: 隐马尔可夫模型 信息 实例 统计学 预测 马尔可夫过程 Leonard E.Baum
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>