编辑实验 创建词条
人大经济论坛-经管百科

协方差 发表评论(0) 编辑词条

协方差(Covariance,COV)

什么是协方差 编辑本段回目录

  在概率论统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

  期望值分别为E(X) = μE(Y) = ν 的两个实数随机变量XY之间的协方差定义为:

  \operatorname{cov}(X, Y) = \operatorname{E}((X - \mu) (Y - \nu)), \,

  其中,E是期望值。它也可以表示为:

  \operatorname{cov}(X, Y) = \operatorname{E}(X \cdot Y) - \mu \nu. \,

  直观上来看,协方差表示的是两个变量总体的误差,这与只表示一个变量误差的方差不同。

  如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。

  如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

  如果XY是统计独立的,那么二者之间的协方差就是0。这是因为

  E(X \cdot Y)=E(X) \cdot E(Y)=\mu\nu,

  但是,反过来并不成立。即如果XY的协方差为0,二者并不一定是统计独立的。

  协方差cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。

  协方差为0的两个随机变量称为是不相关的。

协方差属性 编辑本段回目录

  如果XY是实数随机变量,ab不是随机变量,那么根据协方差的定义可以得到:

\operatorname{cov}(X, X) = \operatorname{var}(X)\,
\operatorname{cov}(X, Y) = \operatorname{cov}(Y, X)\,
\operatorname{cov}(aX, bY) = ab\, \operatorname{cov}(X, Y)\,

  对于随机变量序列X1, ..., XnY1, ..., Ym,有

\operatorname{cov}\left(\sum_{i=1}^n {X_i}, \sum_{j=1}^m{Y_j}\right) =    \sum_{i=1}^n{\sum_{j=1}^m{\operatorname{cov}\left(X_i, Y_j\right)}}.\,

  对于随机变量序列 X1, ..., Xn,有

\operatorname{var}\left(\sum_{i=1}^n X_i \right) = \sum_{i=1}^n \operatorname{var}(X_i) + 2\sum_{i,j\,:\,i<j} \operatorname{cov}(X_i,X_j).

协方差矩阵 编辑本段回目录

  分别为mn个标量元素的列向量随机变量XY,二者对应的期望值分别为μ与ν,这两个变量之间的协方差定义为m×n矩阵。

\operatorname{cov}(X, Y) = \operatorname{E}((X-\mu)(Y-\nu)^\top).\,

  两个向量变量的协方差cov(X,Y)与cov(Y,X)互为转置矩阵。

  协方差有时也称为是两个随机变量之间“线性独立性”的度量,但是这个含义与线性代数中严格的线性独立性线性独立不同。

经管百科已经为您找到更多关于“协方差”的相关信息,点击查看>>

附件列表

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 协方差 方差 概率论 统计学

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>