费波纳奇数字序列 发表评论(0) 编辑词条
费波纳奇数列(Fibonacci Number Series)
该数列由十三世纪意大利数学家费波纳奇(Leonardo Fibonacci)发现。数列中的一系列数字常被人们称之为神奇数、奇异数。
具体数列为:1,1,2,3,5,8,13,21,34,55,89,144,233,……
数列的公式:A0=A1=1;An=An-1+An-2 (n=2,3,4,……)
用语言来表达的话,就是:从数列的第三项数字开始,每个数字等于前两个相邻数字之和。
与费波纳奇数列有关的数字现象很多:两个连续的费波纳奇数字没有公约数;数列中任何10个数之和,均可被11整除;……。这里,我们不加赘述。
无论是从宏观的宇宙空间到微观的分子原子,从时间到空间,从大自然到人类社会,政治、经济、军事……等等,人们都能找到费波纳奇数的踪迹。在期货市场、股票市场的分析中,费波纳奇数字频频出现。例如在波浪理论中,一段牛市上升行情可以用1个上升浪来表示,也可以用5个低一个层次的小浪来表示,还可继续细分为21个或89个小浪;而一段熊市行情可以用1个下降浪来表示,也可以用3个低一个层次的小浪来表示,还可以继续细分为13个或55个小浪;而一个完整的牛熊市场循环,可以用一上一下2个浪来表示,也可以用8个低一个层次的8浪来表示,还可以继续细分为34个或144个小浪。以上这些数字均是费波纳奇数列中的数字。人们在谈到市场的回调、延伸时,常用到0.618,0.328,0.236和1.618,2.382,4.236等数字,这些数字均可出自费波纳奇数中数与数之比例,被称之为费波纳奇比列。如,相邻两个费波纳奇数之比趋向于0.618或1.618,间隔一个的两个相邻费波纳奇数之比趋向于0.382或2.618;间隔两个的相邻费波纳奇数之比趋向于0.236或4.236。
本词条由以下会员参与贡献
- dubianhuizi li>
- jch1988 li>
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
标签: 数列
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>