均方差 发表评论(0) 编辑词条
均方差
均方差也叫标准差,方差开根号为均方差,工程中其量纲与变量一致,应用较广.
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
数学上一般用D=E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差,D开根号为均方差.
定义
设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。
由方差的定义可以得到以下常用计算公式:
D(X)=E(X^2)-[E(X)]^2
方差的几个重要性质(设一下各个方差均存在)。
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。
(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
在统计学中,均方差是对于无法观察的参数 θ 的一个估计函数T;其定义为:
即,它是"误差"的平方的期望值.误差就是估计值与被估计量的差. 均方差满足等式
其中
也就是说,偏差是估计函数的期望值与那个无法观察的参数的差。
下边是一个具体例子.假设
即是一组来自正态分布的样本. 常用的两个对σ 估计函数为:
和 其中
为样本均值.
第一个估计函数为最大似然估计,它是有偏的,即偏差不为零,但是它的方差比第二个小. 而第二个估计函数是无偏的. 较小的方差某种程度上补偿了偏差,因此第二个估计函数的均方差比第一个要小.
另外,这两个估计函数的均方差都比下边这个有偏估计函数小
这个估计函数使得形如(其中c是常数)的均方差最小
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>