正交矩阵 发表评论(0) 编辑词条
正交矩阵
定义 1
n阶实矩阵 A称为正交矩阵,如果:A×A′=I (定义A'表示“矩阵A的转置矩阵”。)
则下列诸条件是等价的:
1) A 是正交矩阵
2) A×A′=I 为单位矩阵
3) A′是正交矩阵
4) A的各行是单位向量且两两正交
5) A的各列是单位向量且两两正交
6) (Ax,Ay)=(x,y) x,y∈R
举例:A=[r11 r12 r13;r21 r22 r23;r31 r32 r33]
则有:r11^2+r12^2+r13^2=r21^2+r22^2+r23^2=r31^2+r32^2+r33^2=1
r11*r12+r21*r22+r31*r32=0等性质
正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
收藏到:
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>