正交表 发表评论(0) 编辑词条
正交表
正交表是一整套规则的设计表格,用 。L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。例如L9(34), (表11),它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×24) (表12),此表的5列中,有1列为4水平,4列为2水平。根据正交表的数据结构看出,正交表是一个n行c列的表,其中第j列由数码1,2,… Sj 组成,这些数码均各出现N/S 次,例如表11中,第二列的数码个数为3,S=3 ,即由1、2、3组成,各数码均出现 次。
正交表具有以下两项性质:
(1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。
2. 交互作用表 每一张正交表后都附有相应的交互作用表,它是专门用来安排交互作用试验。表14就是L8(27)表的交互作用表。
实例
正交 表 具 有以下两个特点。正交表必须满足这两个特点,有一条不满足,就不是正交表。
)1 每列 中 不同数字出现的次数相等。这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。
)2 在任 意 2列其横向组成的数字对中,每种数字对出现的次数相等。这个特点保证了试验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性
(
3) 正 交 表的构造过程
正交 表 的 构造需要用到组合数学和概率学知识,而且如果正交表类型不同,则构造方法差异很大,甚至有些正交表其构造方法到目前还未解决。但目前广泛使用的Lo.[t0]类型的正交表构造思想比较成熟。下面以正交表哪4)为例,介绍一种Lo.[t.]类型正交表的构造过程:
)1 确定 正 交表的行和列。
正交 表 城 3b共有四个因素,每个因素有3个水平,共需安排9次试验。因此,正交表以3b是一个4列、9行的表。生成正交表的表头如表3.8所示。表3.1正交表的表头
因素1 因素2 因素3 因素4
试验一
试验二
试验三
试验四
试验五
试验六
试验七
试验八
试验九
C料程序的单元测试系统的研究与实现
)2 确 定正 交表的内容.
对每 个 因 素的水平进行编号,分别为1、2、3,并将试验按照水平数3进行分组,即每三个试验为一组。
对于 第 一 列:第一组试验中,全部使用因素1的第1个水平;第二组试验中,全部使用因素1的第2个水平;第三组试验中,全部使用因素1的第3个水平。
对于 第 二 列:每一组试验中,都分别使用因素2的三个水平1、2、3:
对于 第 三 列:每一项试验中,每一个水平编号的确定方法见公式3.1。
)3 生 成正 交表。
将每 个 因 素的水平编号填入表中可得正交表如表3.2所示.
表12四因素三水平的正交表
因素1 因素2 因素3 因素4
试验一 1 1 1 1
试验二 1 2 2 2
试脸三 1 3 3 3
试验四 2 1 2 3
试验五 2 2 3 1
试验六 2 3 1 2
试验七 3 1 3 2
试验八 3 2 1 3
试验九 3 3 2 1
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>