最小正周期 发表评论(0) 编辑词条
最小正周期的概念: 编辑本段回目录
如果周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期(minimal positive period).例如,正弦函数的最小正周期是2π.
根据上述定义,我们有:
正弦函数是周期函数,2kπ(k∈Z且k≠0)都是他的周期,最小正周期是2π。
y=Asin(ωx+φ), T=2π/ω
根据上述定义,我们有:
正弦函数是周期函数,2kπ(k∈Z且k≠0)都是他的周期,最小正周期是2π。
y=Asin(ωx+φ), T=2π/ω
函数f(x)±g(x)最小正周期的求法 编辑本段回目录
一、定义法
例1求函数y=|sinx|+|cosx|的最小正周期.
解:∵ =|sinx|+|cosx|
=|-sinx|+|cosx|
=|cos(x+π/2)|+|sin(x+π/2)|
=|sin(x+π/2)|+|cos(x+π/2)|
=f(x+π/2)
对定义域内的每一个x,当x增加到x+π/2时,函数值重复出现,因此函数的最小正周期是π/2.
二、公式法
这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2π/|w| ,正余切函数T=π/|w|.
例2求函数y=cotx-tanx的最小正周期.
解:y=1/tanx-tanx=(1-tanx^2)/tanx=2*(1-tanx^2)/(2tanx)=2cot2x
∴T=π/2
三、最小公倍数法
设f(x)与g(x)是定义在公共集合上的两个三角周期函数,T1、T2分别是它们的周期,且T1≠T2,则f(x)±g(x)的最小正周期T1、T2的最小公倍数,分数的最小公倍数=T1,T2分子的最小公倍数/T1、T2分母的最大公约数
例3求函数y=sin3x+cos5x的最小正周期.
解:设sin3x、cos5x的最小正周期分别为T1、T2,则T1=2π/3,T2=2π/5 ,所以y=sin3x+cos5x的最小正周期T=2π/1=2π.
例4求y=sin3x+tan 的最小正周期.
解:∵sin3x与tan2x/5 的最小正周期是2π/3与5π/2,其最小公倍数是10π/1=10π.
∴y=sin3x+tan2x/5的最小正周期是10π.
四、图象法
例5求y=|sinx|的最小正周期.
解:由y=|sinx|的图象
可知y=|sinx|的周期T=π.
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
收藏到:
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>