编辑实验 创建词条
人大经济论坛-经管百科

structured Monte Carlo 发表评论(0) 编辑词条

Monte Carlo methods (or Monte Carlo experiments) are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo methods are often used in simulating physical and mathematical systems. Because of their reliance on repeated computation of random or pseudo-random numbers, these methods are most suited to calculation by a computer and tend to be used when it is unfeasible or impossible to compute an exact result with a deterministic algorithm.

Monte Carlo simulation methods are especially useful in studying systems with a large number of coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model). More broadly, Monte Carlo methods are useful for modeling phenomena with significant uncertainty in inputs, such as the calculation of risk in business. These methods are also widely used in mathematics: a classic use is for the evaluation of definite integrals, particularly multidimensional integrals with complicated boundary conditions. It is a widely successful method in risk analysis when compared with alternative methods or human intuition. When Monte Carlo simulations have been applied in space exploration and oil exploration, actual observations of failures, cost overruns and schedule overruns are routinely better predicted by the simulations than by human intuition or alternative "soft" methods.

There is no single Monte Carlo method; instead, the term describes a large and widely-used class of approaches. However, these approaches tend to follow a particular pattern:

1. Define a domain of possible inputs.
2. Generate inputs randomly from the domain using a certain specified probability distribution.
3. Perform a deterministic computation using the inputs.
4. Aggregate the results of the individual computations into the final result.

For example, the value of π can be approximated using a Monte Carlo method:

1. Draw a square on the ground, then inscribe a circle within it. From plane geometry, the ratio of the area of an inscribed circle to that of the surrounding square is π / 4.
2. Uniformly scatter some objects of uniform size throughout the square. For example, grains of rice or sand.
3. Since the two areas are in the ratio π / 4, the objects should fall in the areas in approximately the same ratio. Thus, counting the number of objects in the circle and dividing by the total number of objects in the square will yield an approximation for π / 4.
4. Multiplying the result by 4 will then yield an approximation for π itself.

Notice how the π approximation follows the general pattern of Monte Carlo algorithms. First, we define a domain of inputs: in this case, it's the square which circumscribes our circle. Next, we generate inputs randomly (scatter individual grains within the square), then perform a computation on each input (test whether it falls within the circle). At the end, we aggregate the results into our final result, the approximation of π. Note, also, two other common properties of Monte Carlo methods: the computation's reliance on good random numbers, and its slow convergence to a better approximation as more data points are sampled. If grains are purposefully dropped into only, for example, the center of the circle, they will not be uniformly distributed, and so our approximation will be poor. An approximation will also be poor if only a few grains are randomly dropped into the whole square. Thus, the approximation of π will become more accurate both as the grains are dropped more uniformly and as more are dropped.

经管百科已经为您找到更多关于“structured Monte Carlo”的相关信息,点击查看>>

附件列表

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
1

标签: MonteCarlo method finance

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>