编辑实验 创建词条
人大经济论坛-经管百科

芝诺悖论 发表评论(0) 编辑词条

目录

[显示全部]

芝诺悖论(Zeno's Paradoxes)

什么是芝诺悖论编辑本段回目录

  芝诺悖论是古希腊数学家芝诺Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。他的悖论在亚里士多德的《物理学》里被概括为以下四个:二分法阿喀琉斯飞矢不动运动场。这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。这些方法现在可以用微积分(无限)的概念解释。

芝诺悖论的内容编辑本段回目录

  (一)两分法悖论

  悖论:物体在到达目的地之前必须先到达全程的一半,这个要求可以无限的进行下去,所以,如果它起动了,它永远到不了终点,或者,它根本起动不了。

  例如:一位旅行者步行前往一个特定的地点。他必须先走完一半的距离,然后走剩下距离的一半,然后再走剩下距离的一半,永远有剩下部分的一半要走。因而这位旅行者永远走不到目的地!

  (二)阿基里斯悖论

  悖论:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。

  故事:在阿基里斯和乌龟之间展开一场比赛。乌龟在阿基里斯前头1000米开始爬,但阿基里斯跑得比乌龟快10倍,比赛开始,当阿基里斯跑了1000米时,乌龟仍然在他前头100米。而当阿基里斯又跑了100米到达乌龟前此到达的地方时,乌龟又向前爬了10米。芝诺争辩说,阿基里斯将会不断地逼近乌龟,但他永远无法赶上它。

  (三)飞矢不动悖论

  悖论:任何东西占据一个与自身相等的处所时是静止的,飞着的箭在任何一个瞬间总是占据与自身相等的处所,所以也是静止的。

  解释:箭在运动过程中的任一瞬间时必在一个确定位置上,即是静止的,而时间是由无限多个瞬时组成的,因此箭就动不起来了。

  (四)运动场悖论

  悖论:两列物体B、C相对于一列静止物体A相向运动,B越过A的数目是越过C的一半,所以一半时间等于一倍时间。

芝诺悖论的评价[1]编辑本段回目录

  数学史家F·卡约里(Cajori)说:“芝诺悖论的历史,大体上也就是连续性、无限大和无限小这些概念的历史。”但遗憾的是,芝诺的著作没有能流传下来,我们是通过批评他的亚里士多德及其注释者辛普里西奥斯才得以了解芝诺悖论的要旨的。

  直到19世纪中叶,人们对于亚里士多德关于芝诺悖论的引述及批评几乎是深信不疑的,普遍认为芝诺悖论只不过是一些有趣的谬见。英国数学家B·罗素感慨地说:“在这个变化无常的世界上,没有什么比死后的声誉更变化无常了。”死后得不到应有的评价的最显眼的牺牲品莫过于埃利亚的芝诺了。他虽然发明了4个无限微妙、无限深邃的悖论,后世的大批哲学家们却宣称他只不过是一个聪明的骗子,而他的悖论只不过是一些诡辩。

  柏拉图在他的《巴门尼德》篇中,记叙了芝诺和巴门尼德在公元前5世纪的中期去雅典的一次访问。其中说:“巴门尼德年事已高,约65岁,满头白发,但仪表堂堂。那时芝诺约40岁,身材魁梧而美观。” 并在书中记述了芝诺的观点。据说芝诺在为巴门尼德的“存在论”辩护。但是不象他的老师那样企图从正面去证明存在是“一”不是“多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一’的假设得出更可笑的结果。”他用同样的方法,巧妙地构想出一些关于运动的论点。他的这些议论,就是所谓“芝诺悖论”。芝诺有一本著作《论自然》。在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世。”

  公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出了四十个各不相同的悖论。芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯为《物理学》作的注释是了解芝诺悖论的主要依据,此外还有少量零星残篇可提供佐证。现存的芝诺悖论至少有八个,其中最著名的是关于运动的四个悖论。

芝诺悖论的分析与研究[1]编辑本段回目录

  诚如亚里士多德所说,阿基里斯追龟说其实可以归结为二分说。按照二分说,阿基里斯在到达乌龟的起跑点之前,必须先走过这段距离的1/2,为此,又必须先走过1/4,1/8,等等,即必须在有限的时间内通过无限多个点,因此按芝诺的理由,阿基里斯根本就动弹不了。

  芝诺悖论揭示的是事物内部的稠密性和连续性之间的区别,是无限可分和有限长度之间的矛盾,亚里士多德没有能觉察到这一点,当然实际上没有能驳倒芝诺。P·汤纳利(Tannery)在1885年指出,芝诺悖论所反对的是那种认为空间是点的总和、时间是瞬刻的总和的概念。换句话说,芝诺并不否认运动,但是他想证明在空间作为点的总和的概念下运动是不可能的。

  芝诺的类似观点还表现在他的两个针对“多”的悖论中。其中一个见于失传的芝诺原著的如下一段残篇:

  如果有许多事物,那就必须与实际存在的事物相符,既不多也不少。可是如果有象这样多的事物,事物(在数目上)就是有限的了。如果有许多事物,存在物(在数目上)就是无穷的。因为在各个事物之间永远有一些别的事物,而在这些事物之间又有别的事物。这样一来,存在物就是无穷的了。

  芝诺认为存在若是 “多”就会导致无穷的论证,也表达在另一个悖论里。它被辛普里西奥斯至少是部分地逐字逐句记述下来。这些记述不象阿基里斯追龟说和飞箭静止说那样经后人或多或少地修改过,虽然表达得没有那么清楚,但是却更接近于芝诺的原话。辛普里西奥斯在他的引言里说,芝诺首先论证既无“大小”又无厚度的东西是不能存在的。“因为如果这样,它加在某物之上不能使其变大,从某物减去也不能使其变小。但是,如果不能因增加它而使一物增大,也不能因减少它而使一物减小,这就明显地看出,所增加或所减少的是零。”

  因此,把任意数目的这些“无”元素加在任何东西上都不会使它增大,反之从任何东西里减去它们也不会使它变小;当然,把这些“无”元素通通加起来,即使其数目有无限多个,其总和还是“无”。上述悖论和关于运动的前三个悖论的共同点,在于假定了空间、时间和物体的无限可分性,实际上还讨论了无穷小和连续性。芝诺在这里其实还援引了如下两个假设:

  i) 无限多个相等的任意小的正量的总和必然是无穷大;

  ii) 无限多个没有大小的量的总和仍然是没有大小的量。

  其中假设ii)是芝诺反对把线段(时间、空间)看成是一个无限点集(无限多个没有大小的量的总和)的主要依据。因此解决芝诺悖论的一个关键就是证明假设ii)不成立。A·格兰巴姆(Grünbaum)于1952年详尽地讨论了这个问题。他把只含有一个点的子区间定义为退化子区间,从而得出下列结论:

  1)有限区间(a,b)是退化子区间的连续统的并集;

  2)每个退化子区间的长度是零;

  3)区间(a,b)的长度是b—a;

  4)一个区间的长度不是它的基数的函数。

  因此,芝诺的假设ii)不能成立。事实上,将一个线段(或别的量)按二分法进行无限分割,不可能有最后元素。因为既是无限分割,它就是一个没有最后一项的永远不能完成的过程。在取极限的意义上,按结论1),有限区间(a,b)成为不可数的无限个退化子区间的并集,这时虽然每个退化子区间(或每个点)的长度为0,但整个并集的长度不是0,而是b—a(按结论3))。这样,作为对芝诺和亚里士多德的回答,时间和距离都是作为无长度元素(点)的无穷集合的线性连续统。换言之,线段是点的无穷集合,而时间是无广延的瞬刻的无穷集合,它们都是线性连续统。这样,飞箭静止说这一悖论,原来指在任一给定的瞬刻是不动的但在由无限多瞬刻组成的连续体上却是动的,现在转换成一个新的“悖论”:由无广延的点组成的无穷集却有广延。

  这是古代文献中第一个涉及相对运动的问题,在现存的芝诺悖论中,它是唯一的和连续统问题无关的问题。不过也有学者(例如P.汤纳利等人)认为它和连续统问题是有着某种联系的。

参考文献编辑本段回目录

经管百科已经为您找到更多关于“芝诺悖论”的相关信息,点击查看>>

附件列表

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

标签: 芝诺悖论 B·罗素 Zeno of Elea 两分法悖论 亚里士多德 芝诺 运动场悖论 阿基里斯悖论 阿基里斯跑不过乌龟 飞矢不动 飞矢不动悖论

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>