ARMA模型 发表评论(0) 编辑词条
ARMA模型概述 编辑本段回目录
ARMA 模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。
ARMA模型的基本原理 编辑本段回目录
将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,
其中Y是预测对象的观测值, e为误差。作为预测对象Yt受到自身变化的影响,其规律可由下式体现,
误差项在不同时期具有依存关系,由下式表示,
由此,获得ARMA模型表达式:
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
收藏到:
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>