贝叶斯 发表评论(0) 编辑词条
【理论概述】编辑本段回目录
贝叶斯(1702-1763) Thomas Bayes,英国数学家.1702年出生于伦敦,做过神甫。1742年成为英国皇家学会会员。1763年4月7日逝世。贝叶斯在数学方面主要研究概率论。他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用。贝叶斯的另一著作《机会的学说概论》发表于1758年。贝叶斯所采用的许多术语被沿用至今。
贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:
1、已知类条件概率密度参数表达式和先验概率。
2、利用贝叶斯公式转换成后验概率。
3、根据后验概率大小进行决策分类。
他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是他在1763年提出来的:
假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。
【贝叶斯公式】 编辑本段回目录
n
P(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)
i=1
贝叶斯公式
【贝叶斯决策理论分析】 编辑本段回目录
(2)如果我们不知道任何有关被分类类别概率分布的知识,已知已经标记类别的训练样本集合和判别式函数的形式,那我们就需要从训练样本集合中来估计判别式函数的参数。在现实世界中有时会出现这种情况。(如已知判别式函数为线性或二次的,那么就要根据训练样本来估计判别式的参数,常见的是线性判别式和神经网络)
(3)如果我们既不知道任何有关被分类类别概率分布的知识,也不知道判别式函数的形式,只有已经标记类别的训练样本集合。那我们就需要从训练样本集合中来估计概率分布函数的参数。在现实世界中经常出现这种情况。(如首先要估计是什么分布,再估计参数。常见的是非参数估计)
(4)只有没有标记类别的训练样本集合。这是经常发生的情形。我们需要对训练样本集合进行聚类,从而估计它们概率分布的参数。(这是无监督的学习)
(5)如果我们已知被分类类别的概率分布,那么,我们不需要训练样本集合,利用贝叶斯决策理论就可以设计最优分类器。但是,在现实世界中从没有出现过这种情况。这里是贝叶斯决策理论常用的地方。
问题:假设我们将根据特征矢量x 提供的证据来分类某个物体,那么我们进行分类的标准是什么?decide wj, if(p(wj|x)>p(wi|x))(i不等于j)应用贝叶斯展开后可以得到p(x|wj)p(wj)>p(x|wi)p(wi)即或然率p(x|wj)/p(x|wi)>p(wi)/p(wj),决策规则就是似然率测试规则。
结论:对于任何给定问题,可以通过似然率测试决策规则得到最小的错误概率。这个错误概率称为贝叶斯错误率,且是所有分类器中可以得到的最好结果。最小化错误概率的决策规则就是最大化后验概率判据。
【贝叶斯决策判据】编辑本段回目录
贝叶斯决策理论方法是统计模式识别中的一个基本方法。贝叶斯决策判据既考虑了各类参考总体出现的概率大小,又考虑了因误判造成的损失大小,判别能力强。贝叶斯方法更适用于下列场合:
(1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。
(2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进行分类时要求两点: 第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。
第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。
对于两类故障诊断问题,就相当于在识别前已知正常状态D1的概率户(D1)和异常状态0:的概率P(D2),它们是由先验知识确定的状态先验概率。如果不做进一步的仔细观测,仅依靠先验概率去作决策,那么就应给出下列的决策规则:若P(D1)>P(D2),则做出状态属于D1类的决策;反之,则做出状态属于D2类的决策。例如,某设备在365天中,有故障是少见的,无故障是经常的,有故障的概率远小于无故障的概率。因此,若无特B,j明显的异常状况,就应判断为无故障。显然,这样做对某一实际的待检状态根本达不到诊断的目的,这是由于只利用先验概率提供的分类信息太少了。为此,我们还要对系统状态进行状态检测,分析所观测到的信息。
本词条由以下会员参与贡献
- ermutuxia li>
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>