概率悖论 发表评论(0) 编辑词条
概率悖论出自法国数学家莫里斯·克莱特契克,在他的《数学消遣》书中写道:
“有两个人都声称他的领带好一些。他们叫来了第三个人,让他作出裁决到底谁的好。胜者必须拿出他的领带给败者作为安慰。两个争执者都这样想:我知道我的领带值多少。我也许会失去它,可是我也可能赢得一条更好的领带,所以这种比赛是对我有利。一个比赛怎么会对双方都有利呢?”
一个比赛怎么会对双方都有利呢?
-----------------------------------------------
错!要不然怎么能有双赢呢?
很容易表明,如果我们做出一个明确的假定来准确地限定条件,它就是一个公正的比赛。当然,如果我们已经得知比赛中的一个人系较便宜的领带,那么我们就知道这个比赛是不公平的。如果无法得到这类消息,我们就可以假定每一个的领带价值从0到任意数量(比如说一百元)的随便多少钱。如果我们按此假定构成一个两人领带价值的矩阵(这是克莱特契克在他的书中列出的),我们就可看出这个此赛是“对称的”,不会偏向任何一个比赛者。
一个比赛(或赌博)怎么会对双方都同时有利呢?
一个理发师只给“不给自己理发的人”理发,那么,他该不该给自己理发呢?给自己理发,违反了自己的规则,不给自己理发,还是违反了自己的规则!
“有两个人都声称他的领带好一些。他们叫来了第三个人,让他作出裁决到底谁的好。胜者必须拿出他的领带给败者作为安慰。两个争执者都这样想:我知道我的领带值多少。我也许会失去它,可是我也可能赢得一条更好的领带,所以这种比赛是对我有利。一个比赛怎么会对双方都有利呢?”
一个比赛怎么会对双方都有利呢?
-----------------------------------------------
错!要不然怎么能有双赢呢?
很容易表明,如果我们做出一个明确的假定来准确地限定条件,它就是一个公正的比赛。当然,如果我们已经得知比赛中的一个人系较便宜的领带,那么我们就知道这个比赛是不公平的。如果无法得到这类消息,我们就可以假定每一个的领带价值从0到任意数量(比如说一百元)的随便多少钱。如果我们按此假定构成一个两人领带价值的矩阵(这是克莱特契克在他的书中列出的),我们就可看出这个此赛是“对称的”,不会偏向任何一个比赛者。
一个比赛(或赌博)怎么会对双方都同时有利呢?
一个理发师只给“不给自己理发的人”理发,那么,他该不该给自己理发呢?给自己理发,违反了自己的规则,不给自己理发,还是违反了自己的规则!
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
收藏到:
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>