补集 发表评论(0) 编辑词条
定义:
一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作CuA.
在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。
补集可以看作两个集合相减,有时也称作差集。
1:若 A,B,C 是集合,则下列恒等式成立:
C − (A ∩B) = (C − A) ∪(C − B)
C − (A ∪B) = (C − A) ∩(C − B)
C − (B − A) = (A ∩C) ∪(C − B)
(B − A) ∩C = (B ∩C) − A = B ∩(C − A)
(B − A) ∪C = (B ∪C) − (A − C)
A − A = Φ
Φ; − A =Φ ;
A − Φ = A
若给定全集 U,则 A 在 U 中的相对补集称为 A 的绝对补集(或简称补集),写作 CA,即:
CA = U − A
与补集有关的运算规律
求补律
A∪CuA=S
A∩CuA=Φ
一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作CuA.
在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。
补集可以看作两个集合相减,有时也称作差集。
1:若 A,B,C 是集合,则下列恒等式成立:
C − (A ∩B) = (C − A) ∪(C − B)
C − (A ∪B) = (C − A) ∩(C − B)
C − (B − A) = (A ∩C) ∪(C − B)
(B − A) ∩C = (B ∩C) − A = B ∩(C − A)
(B − A) ∪C = (B ∪C) − (A − C)
A − A = Φ
Φ; − A =Φ ;
A − Φ = A
若给定全集 U,则 A 在 U 中的相对补集称为 A 的绝对补集(或简称补集),写作 CA,即:
CA = U − A
与补集有关的运算规律
求补律
A∪CuA=S
A∩CuA=Φ
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
1
收藏到:
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>