集合论 发表评论(0) 编辑词条
【集合论】(Set theory) 编辑本段回目录
数学的一个基本的分支学科,研究对象是一般集合。集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。按现代数学观点,数学各分支的研究对象或者本身是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如自然数、实数、函数)。从这个意义上说,集合论可以说是整个现代数学的基础。集合论作为数学中最富创造性的伟大成果之一,是在19世纪末由德国的康托尔(1845-1918)创立起来的。但是,它萌发、孕育的历史却源远流长,至少可以追溯到两千多年前。
【无穷集合的早期研究】 编辑本段回目录
集合论是关于无穷集合和超穷数的数学理论。集合作为数学中最原始的概念之一,通常是指按照某种特征或规律结合起来的事物的总体。例如美国国会图书馆的全部藏书,自然数的全体以及直线上所有点的总体等等。集合论的全部历史都是围绕无穷集合而展开的。
早在集合论创立之前两千多年,数学家和哲学家们就已经接触到了大量有关无穷的问题,古希腊的学者最先注意并考察了它们。公元前5世纪,埃利亚学派的芝诺(约公元前490-前430),一共提出45个悖论,其中关于运动的四个悖论:二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论尤为著名,前三个悖论都与无穷直接有关。芝诺在悖论中虽然没有明确使用无穷集合的概念,但问题的实质却与无穷集合有关。
在数理哲学中,有两种无穷方式历来为数学家和哲学家所关注,一种是无穷过程,称为潜在无穷,一种是无穷整体,称为实在无穷。希腊哲学家亚里士多德(前384-前322)最先提出要把潜在的无穷和实在的无穷加以区别,这种思想在当今仍有重要意义。他认为只存在潜在无穷,如地球的年龄是潜在无穷,但任意时刻都不是实在无穷。他承认正整数是潜在无穷的,因为任何正整数加上1总能得到一个新数。对他来说,无穷集合是不存在的。
哲学权威亚里士多德把无穷限于潜在无穷之内,如同下了一道禁令,谁敢冒天下之大不韪,以至于影响对无穷集合的研究达两千多年之久。
公元5世纪,拜占庭的普罗克拉斯(410-485)是欧几里德《几何原本》的著名评述者。他在研究直径分圆问题时,注意到圆的一根直径分圆成两个半圆,由于直径有无穷多,所以必须有两倍无穷多的半圆。为了解释这个在许多人看来是一个矛盾的问题,他指出:任何人只能说有很大很大数目的直径或者半圆,而不能说一个实实在在无穷多的直径或者半圆,也就是说,无穷只能是一种观念,而不是一个数,不能参与运算。其实,他这里是接受了亚里士多德的潜无穷的概念,而否认实无穷的概念,对这种对应关系采用了回避的态度。
到了中世纪,随着无穷集合的不断出现,部分能够同整体构成一一对应这个事实也就越来越明显地暴露出来。例如,数学家们注意到把两个同心圆上的点用公共半径联结起来,就构成两个圆上的点之间的一一对应关系。近代科学的开拓者伽利略(1564-1642)注意到:两个不等长的线段上的点可以构成一一对应。他又注意到:正整数与它们的平方可以构成一一对应,这说明无穷大有不同的“数量级”,不过伽利略认为这是不可能的。他说,所有无穷大量都一样,不能比较大小。
到了十七世纪,数学家把无穷小量引进数学,构成所谓“无穷小演算”,这就是微积分的最早名称。所谓积分法无非是无穷多个无穷小量加在一起,而微分法则是两个无穷小量相除。由于无穷小量运算的引进,无穷大模大样地进入数学,虽然它给数学带来前所未有的繁荣和进步,它的基础及其合法性仍然受到许多数学家的质疑,他们对无穷仍然心存疑虑,这方面以“数学家之王”高斯(1777—1855)的意见为代表。高斯是一个潜在无穷论者,他在1831年7月12日给他的朋友舒马赫尔的信中说“我必须最最强烈地反对你把无穷作为一完成的东西来使用,因为这在数学中是从来不允许的。无穷只不过是一种谈话方式,它是指一种极限,某些比值可以任意地逼近它,而另一些则容许没有限制地增加。”这里极限概念只不过是一种潜在的无穷过程。这里高斯反对那些哪怕是偶尔用一些无穷的概念,甚至是无穷的记号的人,特别是当他们把它当成是普通数一样来考虑时。
法国大数学家柯西(1789-1857)也同他的前人一样,不承认无穷集合的存在。他认为部分同整体构成一一对应是自相矛盾的事。
科学家们接触到无穷,却又无力去把握和认识它,这的确是向人类提出的尖锐挑战。正如大卫·希尔伯特(1862-1943)在他的1926年《论无穷》的讲演中所说的那样:“没有任何问题象无穷那样深深地触动人的情感,很少别的观念能象无穷那样激励理智产生富有成果的思想,然而也没有任何其它概念能象无穷那样需要加以阐明”。面对“无穷”的长期挑战,数学家们不会无动于衷,他们为解决无穷问题而进行的努力,首先是从集合论的先驱者开始的。
【集合论的诞生】 编辑本段回目录
数学分析严格化的先驱波尔查诺(1781-1848)也是一位探索实无穷的先驱,他是第一个为了建立集合的明确理论而作出了积极努力的人。他明确谈到实在无穷集合的存在,强调两个集合等价的概念,也就是后来的一一对应的概念。他知道,无穷集合的一个部分或子集可以等价于其整体,他认为这个事实必须接受。例如0到5之间的实数通过公式y=12x/5可与0到12之间的实数构成一一对应,虽然后面的集合包含前面的集合。为此,他为无穷集合指定超限数,使不同的无穷集合,超限数不同。不过,后来康托尔指出,波尔查诺指定无穷集合的超限数的具体方法是错误的。另外,他还提出了一些集合的性质,并将他们视为悖论。因此,他关于无穷的研究哲学意义大于数学意义。应该说,他是康托尔集合论的先驱。
黎曼(1826-1866)是在1854年的就职论文《关于用三角级数表示函数的可能性》中首次提出“唯一性问题”的。大意是:如果函数f(x)在某个区间内除间断点外所有点上都能展开为收敛于函数值的三角级数,那么这样的三角级数是否是唯一的?但他没有给予回答。1870年海涅(1821-1881)证明:当f(x)连续,且它的三角级数展开式一致收敛时,展开式是唯一的。进一步的问题是:当f(x)具有无穷多个间断点时,唯一性能否成立?康托尔就是通过对唯一性问题的研究,认识到无穷集合的重要性,并开始从事无穷集合的一般理论研究。
早在1870年和1871年,康托尔两次在《数学杂志》上发表论文,证明了函数f(x)的三角级数表示的唯一性定理,而且证明了即使在有限个间断点处不收敛,定理仍然成立。1872年他在《数学年鉴》上发表了一篇题为《三角级数中一个定理的推广》的论文,把海涅的一致收敛的严酷条件推广到允许间断点是某种无穷的集合的情形。为了描述这种集合,他首先定义了点集的极限点,然后引进了点集的导集和导集的导集等有关重要概念。这是从唯一性问题的探索向点集论研究的开端,并为点集论奠定了理论基础。
1873年11月29日康托尔在给戴德金(1831-1916)的一封信中,终于把导致集合论产生的问题明确地提了出来:正整数的集合(n)与实数的集合(x)之间能否把它们一一对应起来。同年12月7日,康托尔写信给戴德金,说他已能成功地证明实数的“集体”是不可数的,也就是不能同正整数的“集体”一一对应起来。这个时期应该看成是集合论的诞生日。
1874年,康托尔发表了这个证明,不过论文题目换成另外一个题目“论所有实代数数集体的一个性质,”因为克洛内克(1823-1891)根本就反对这种论文,他认为这种论文根本没有内容,无的放矢。该文提出了“可数集”概念,并以一一对应为准则对无穷集合进行分类,证明了如下重要结果:(1)一切代数数是可数的;(2)任何有限线段上的实数是不可数的;(3)超越数是不可数的;(4)一切无穷集并非都是可数的,无穷集同有穷集一样也有数量(基数)上的区别。
1874年1月5日,康托尔给戴德金写信,提出下面的问题:
是否能把一块曲面(如包含边界在内的正方形)一意地映射到一条线(如包含端点在内的线段),使得面上每一点对应线上一点而且反过来线上每一点对应面上一点?
1877年6月20日,他给戴德金写信,这次他告诉他的朋友这个问题答案是肯定的理由,虽然几年以来他都认为答案是否定的。信中说“我看到了它,但我简直不能相信它”。关于这一成果的论文1878年发表后,吸引人们研究度量空间维数的本质,很快出现一批论文。这批论文标志集合拓扑的开始。
从1879年到1883年,康托尔写了六篇系列论文,论文总题目是“论无穷线形点流形”,其中前四篇同以前的论文类似,讨论了集合论的一些数学成果,特别是涉及集合论在分析上的一些有趣的应用。第五篇论文后来以单行本出版,单行本的书名《一般集合论基础》。第六篇论文是第五篇的补充。《一般集合论基础》在数学上的主要成果是引进超穷数。该文从内容到叙述方式都同现代的朴素集合论基本一致,所以该书标志着点集论体系的建立。
1884年,由于连续统假设长期得不到证明,再加上与克罗内克的尖锐对立,精神上屡遭打击,5月底,他支持不住了,第一次精神崩溃。他的精神沮丧,不能很好地集中研究集合论,从此深深地卷入神学、哲学及文学的争论而不能自拔。不过每当他恢复常态时,他的思想总变得超乎寻常的清晰,继续他的集合论的工作。
《对超穷集合论基础的贡献》是康托尔最后一部重要的数学著作。《贡献》分两部分,第一部分是全序集合的研究,于1895年5月在《数学年刊》上发表。第二部分于1897年5月在《数学年刊》上发表。《贡献》的发表标志集合论已从点集论过渡到抽象集合论。但是,由于它还不是公理化的,而且它的某些逻辑前提和某些证明方法如不给予适当的限制便会导出悖论,所以康托尔的集合论通常成为古典集合论或朴素集合论。
不过,康托尔的集合论并不是完美无缺的,一方面,康托尔对“连续统假设”和“良序性定理”始终束手无策;另一方面,19和20世纪之交发现的布拉利-福蒂悖论、康托尔悖论和罗素悖论,使人们对集合论的可靠性产生了严重的怀疑。加之集合论的出现确实冲击了传统的观念,颠倒了许多前人的想法,很难为当时的数学家所接受,遭到了许多人的反对,其中反对的最激烈的是柏林学派的代表人物之一、构造主义者克罗内克。克罗内克认为,数学的对象必须是可构造出来的,不可用有限步骤构造出来的都是可疑的,不应作为数学的对象,他反对无理数和连续函数的理论,同样严厉批评和恶毒攻击康托尔的无穷集合和超限数理论不是数学而是神秘主义。他说康托尔的集合论空空洞洞毫无内容。集合论的悖论出现之后,他们开始认为集合论根本是一种病态,他们以不同的方式发展为经验主义、半经验主义、直觉主义、构造主义等学派,在基础大战中,构成反康托尔的阵营。
康托尔的集合论得到公开的承认和热情的称赞应该说首先在瑞士苏黎世召开的第一届国际数学家大会上表现出来。瑞士苏黎世理工大学教授胡尔维茨(1859-1919)在他的综合报告中,明确地阐述康托尔集合论对函数论的进展所起的巨大推动作用,这破天荒第一次向国际数学界显示康托尔的集合论不是可有可无的哲学,而是真正对数学发展起作用的理论工具。在分组会上,法国数学家阿达玛(1865-1963),也报告康托尔对他的工作的重要作用。
随着时间的推移,人们逐渐认识到集合论的重要性。希尔伯特高度赞誉康托尔的集合论“是数学天才最优秀的作品”,“是人类纯粹智力活动的最高成就之一”,“是这个时代所能夸耀的最巨大的工作”。在1900年第二届国际数学家大会上,希尔伯特高度评价了康托尔工作的重要性,并把康托尔的连续统假设列入20世纪初有待解决的23个重要数学问题之首。当康托尔的朴素集合论出现一系列悖论时,克洛内克的后继者布劳威尔(1881-1966)等人借此大做文章,希尔伯特用坚定的语言向他的同代人宣布:“没有任何人能将我们从康托尔所创造的伊甸园中驱赶出来”。
【集合论的发展】 编辑本段回目录
1899年第一篇点集论的论文在《德国数学家联合会年报》上发表,这篇论文是德国数学家舍恩弗利斯(1853-1928)写的。他本人在其后还为德国《数学科学百科全书》中撰写有关条目。20世纪初他继续研究康托尔留下的问题,特别是维数不变性问题。大约同时,德国数学家豪斯道夫(1868-1942)对集合论进行一系列研究,特别是序型及序集理论。1914年出版《集合论大纲》更是集合论及点集拓扑学的经典著作,他的体系是后来研究的基础及出发点。从此集合论成为系统的学科 。
从非欧几何的产生开始的对数学无矛盾性(相对无矛盾性)的证明把整个数学解释为集合论,集合论成了数学无矛盾性的基础,集合论在数学中的基础理论地位就逐步确立起来。
19和20世纪之交人们发现了一系列集合论悖论,表明集合论是不协调的,这使得人们对数学推理的正确性和结论的真理性产生了怀疑,触发了第三次数学危机。为了克服悖论所带来的困难,人们开始对集合论进行改造,即对康托尔的集合定义加以限制,“从现有的集合论成果出发,反求足以建立这一数学分支的原则。这些原则必须足够狭窄,以保证排除一切矛盾,另一方面,又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来” (策梅罗语)。这就是集合论公理化方案。1908年策梅罗(1871-1953)提出第一个公理集合论系统,后经德国-以色列数学家弗兰克尔(1891-1965)和挪威数学家斯科兰姆(1887-1963)的补充和修正,得到现在公认的策梅罗-弗兰克尔公理系统,简记为ZF,ZF如果另加选择公理(AC),则所得的公理系统简记为ZFC.1925年大数学家冯·诺伊曼(1903-1957)开创了另一套公理系统,后经伯奈斯(1888-1977)及哥德尔(1906-1978)的改进形成了NBG公理系统。已经证明,ZF对于发展集合论是足够了,它能避免已知的集合论悖论,并在数学基础研究中提供了一种方便的语言和工具。在ZF中,几乎所有的数学概念都能用集合论语言表达,数学定理也大都可以在ZFC内得到形式证明,因而作为整个数学的基础,ZFC是完备的,数学的无矛盾性可以归结为ZFC的无矛盾性。
由哥德尔不完全性定理可知,如果ZF是无矛盾的,则在ZF中不能证明自身的无矛盾性,所以在公理集合论中只考虑相对无矛盾性问题。已经证明,如果ZF是无矛盾的,则NBG也是无矛盾的。选择公理(AC)和连续统假设(CH)有重要地位,是集合论中长期研究的课题。AC成为数学史上继平行公理之后最有争议的公理,CH是1878年康托尔提出来的,简单的说,就是关于直线上有多少点的问题。
近40年来在AC和CH研究方面取得不少进展。1938年,哥德尔证明了:从ZF推不出AC的否定,从ZFC推不出CH的否定,即AC对于ZF,CH对于ZFC是相对无矛盾的.1963年,科恩(1934- )创立著名的力迫法,证明了AC对于ZF,CH对于ZFC的相对独立性,即从ZF推不出AC,从ZFC推不出CH。综合这两个结果,得出AC在ZF中,CH在ZFC中都是不可判定的。此外,大基数问题,无穷组合论的研究亦有很大进展,70年代以来,决定性公理的研究与它们交织在一起,有很大的进展,同时,人们还在寻找迄今尚未发现的与其它公理无矛盾的可信赖的新的公理,以期在更有效的途径上来解决连续统问题,这方面的工作成为集合论当前研究的主流。
【对等势比较数量方法的质疑】编辑本段回目录
等势(等基数)的概念。
设A、B是两个集,如果存在一个A到B的一一对应,那么称集A与集B等势(或相似、或对等、或等基数),记为A~B,规定空集跟自身等势。
而等势的概念是我们建立势的理论从而对集合进行比较的基础。
例如,正偶数集合和自然数集,ψ:n->2n,即可使得两集合之间建立一一对应,因此他们是等势的。”
反驳:
对等的方法,只能在有限集比较中有效。扩展到无限集是不可信的。
例:“问:某班学生人数与教室的凳子数哪个多?最笨但也最显然的方法是规定每个学生都去坐在凳子上,而且一个学生只能坐一张凳子。最后,如果有学生没坐到凳子,那么便是学生多。如果最后有凳子空着,那么便是凳子多。”
如果是有限数量,可以用一对一的方法比较,无限数量,不行。
假设来个副校长,要求每两个学生坐一个凳子,然后他检查了教室一,教室2,教室三......他看到的每个教室都是如此,后面的教室他认为不用检查了(或根本不可能检查完——无穷的概念),于是他宣布,本学校凳子数量,正好是学生数量的一半。
第二天,又来个副校长,要求每个学生坐一个凳子,然后他检查了教室一,教室2,教室三......他看到的每个教室都是如此,后面的教室他认为不用检查了(或根本不可能检查完——无穷的概念),于是他宣布,本学校凳子数量,正好等于学生数量。
两位自以为是的校长都有可能是对的,也可能是错的,方法不对。
在有限集的比较过程中,关键不在建立了怎样的对应关系,关键在于我们要比较到最后,至少一个集合结束了,而另一个集合中元素数量已经超过对比集合数量,而且还没结束,我们才能证明一个集合建立的对应关系比另一个集合数量多。
自然数集中可以抽出偶数集,跟偶数集完全一一对应,而自然数集还有剩余元素,因此我们可以得到结论:自然数集比偶数集多。
康托尔对角线证明
现在来证明实数区间[0, 1]中所有的实数组成的集合是不可列集。
其实只要证明(0,1]区间的实数集是不可列的。如果它是可列的,说明其中所有的实数均可排列成一数列t1,t2,...,tn,...,只有这样,它才能对等于自然数集。好,这时我们将(0,1]中的实数用十进制的无限小数表示:
t1 = 0. t11 t12 t13 ... t1n ...
t2 = 0. t21 t22 t23 ... t2n ...
...
tm = 0. tm1 tm2 tm3 ... tmn ...
...
其中所有的tij都是0~9这十个数字中的某一个。
但是现在我们可以构造一个小数a=0. a1 a2 a3 ... ak ...,任意的ai也都是0~9这十个数字中的某一个,但我们让每个ai都不等于上述实数列中的tii,也就是让第i位的数字跟数列中第i行第i个数字不同。这是可行的,因为我们用的是十进制小数,还剩下9个不同数字可供选择呢。
当我们构造好了这样的一个小数之后,我们发现它实际上跟上述小数列中的任何一个都不相等。这就造成了逻辑上的矛盾,你说已经把所有小数都列出来了,但是我却发现至少我构造的这个小数,你还没有罗列出来。就算你亡羊补牢,把我这个也补充进去,但是我还是可以根据同样规则又构造出另一个。所以,只能说明实数是无法跟可列集形成一一对应的,也就是前面的假设是错误的。
因此[0, 1]区间的实数不是可列集。同样,取掉0,1两个数之后的(0,1)区间的实数也不是可列集。
反驳:
无限集都是不可写全的,对比定理“最大元素数量的有限集是不可能写全的”的证明方法,我们发现,康托尔不过是假设了自然数可以全写出来,然后又假设写出一个在已写出的自然数中不存在的自然数。对于无限集,他是不能做此假设的。而事实上,如果允许等势的概念存在,所有无穷集,都等势。总是你有一个元素,我就能拿出一个元素对应,同样也都可以你拿1个我拿2个,或相反,你拿2个我拿1个,都是能永远对应的,没有尽头。
附件列表
→如果您认为本词条还有待完善,请 编辑词条
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0
同义词: 暂无同义词
关于本词条的评论 (共0条)发表评论>>