编辑实验 创建词条
人大经济论坛-经管百科

数论 发表评论(0) 编辑词条

目录

数论概述 编辑本段回目录


  数论就是指研究整数性质的一门理论。整数的基本元素是素数,所以,数论的本质是对素数性质的研欧几里得的《几何原本》究。2000年前,欧几里得证明了有无穷个素数。既然有无穷个,就一定有一个表示所有素数的素数通项公式,或者叫素数普遍公式。它是和平面几何学同样历史悠久的学科。高斯誉之为“数学中的皇冠”。 按照研究方法的难易程度来看,数论大致上可以分为初等数论(古典数论)和高等数论(近代数论)。
  初等数论主要包括整除理论同余理论连分数理论。它的研究方法本质上说,就是利用整数环的整除性质。 初等数论也可以理解为用初等数学方法研究的数论。 其中最高的成就包括高斯的“二次互反律”等。
  高等数论则包括了更为深刻的数学研究工具。它大致包括代数数论、解析数论、算术代数几何等等。

数论门类 编辑本段回目录


 
 ·初等数论

   同上所述, 初等数论主要就是研究整数环的整除理论及同余理论。此外它也包括了连分数理论和少许不定方程的问题。 本质上说,初等数论的研究手段局限在整除性质上。
  初等数论中经典的结论包括 算术基本定理、欧几里得的质数无限证明、中国剩余定理、欧拉定理(其特例是 费马小定理)、高斯的二次互逆律 , 勾股方程的商高定理、 佩尔方程的连分数求解法等等。《数论》英文版
  ·解析数论


  借助微积分及复分析 (即复变函数)来研究关于整数的问题,主要又可以分为乘性数论与加性数论两类。乘性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。
  解析数论的创立当归功于黎曼。 他发现了黎曼zeta函数之解析性质与数论中的素数分布问题存在深刻联系。确切的说, 黎曼ζ函数的非平凡零点的分布情况决定了素数的很多性质。黎曼猜测, 那些零点都落在复平面上实部为1/2的直线上。这就是著名的黎曼假设--被誉为千禧年七大世界数学难题之一。值得注意的是, 欧拉实际上在处理素数无限问题时也用到了解析方法。
  解析数论方法除了圆法、筛法等等之外, 也包括和椭圆曲线相关的模形式理论等等。此后又发展到自守形式理论,从而和表示论联系起来。  

 ·代数数论


  代数数论,将整数环的数论性质研究扩展到了更一般的整环上,特别是代数数域。一个主要课题就是关于代数整数的研究,目标是为了更一般地解决不定方程 求解的问题。 其中一个主要的历史动力来自于寻找费马大定理的证明。
  代数数论更倾向于从代数结构角度去研究各类整环的性质, 比如在给定整环上是否存在算术基本定理等等。
  这个领域与代数几何之间的关联尤其紧密, 它实际上也构成了交换代数理论的一部分。 它也包括了其他深刻内容,比如表示论、p-adic理论等等。

  ·几何数论(数的几何)


  主要在于通过几何观点研究整数(在此即格点, 也称整点)的分布情形。最著名的定理为Minkowski 定理。 这门理论也是有闵科夫斯基所创。 对于研究二次型理论有着重要作用。

  ·计算数论


  借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。

  ·超越数论


  研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。此外它也探讨了数的丢番图逼近理论。


 

  ·组合数论


  利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。比如兰伯特猜想的简化证明。


 

  ·算术代数几何

  这是数论发展到目前为止最深刻最前沿的领域, 可谓集大成者。 它从代数几何的观点出发,通过深刻的数学工具去研究数论的性质。比如外尔斯证明费马猜想就是这方面的经典实例。 整个证明几乎用到了当时所有最深刻的理论工具。
  当代数论的一个重要的研究指导纲领,就是著名的郎兰兹纲领。


 

  ·其他的研究方法
  除了上述传统方法之外,也有其他一些研究数论之法, 但是没有完全得到数学家的认可。 比如有物理学家,通过量子力学方法声称证明了黎曼假设。
[编辑本段]数论的发展简况
  公元前300年,古希腊数学家欧几里得就发现了数论的本质是素数,他自己证明了有无穷多个素数,公元前250年古希腊数学家埃拉托塞尼发明了一种筛法:
  (一)“要得到不大于某个自然数N的所有素数,只要在2---N中将不大于√N的素数的倍数全部划去即可”。後来人们
  (二)将上面的内容等价转换:“如果N是合数,则它有一个因子d满足1  (三)再将(二)的内容等价转换:“若自然数N不能被不大于(根号)√N的任何素数整除,则N是一个素数”。见(代数学辞典[上海教育出版社]1985年。屉部贞世朗编。259页)。
  (四)上面这句话的汉字可以等价转换成为用英文字母表达的公式:
  N=p1m1+a1=p2m2+a2=......=pkmk+ak 。(1)
  
  其中 p1,p2,.....,pk表示顺序素数2,3,5,,,,,。a≠0。即N不能是2m+0,3m+0,5m+0,...,pkm+0形。若N  (五)可以把(1)等价转换成为用同余式组表示:
  N≡a1(modp1), N≡a2(modp2),.....,N≡ak(modpk)。 (2)
  
  例如,29,29不能够被根号29以下的任何素数2,3,5整除,29=2x14+1=3x9+2=5x5+4。 29≡1(mod2),29≡2(mod3), 29≡4(mod5)。29小于7的平方49,所以29是一个素数。
  以后平方用“*”表示,即:㎡=m*。
  由于(2)的模p1,p2,....,pk 两两互素,根据孙子定理(中国剩余定理)知,(2)在p1p2.....pk范围内有唯一解。
  例如k=1时,N=2m+1,解得N=3,5,7。求得了(3,3*)区间的全部素数。
  k=2时,N=2m+1=3m+1,解得N=7,13,19; N=2m+1=3m+2,解得N=5,11,17,23。求得了(5,5*)区间的全部素数。
  k=3时,
  ---------------------| 5m+1-|- 5m+2-| 5m+3,| 5m+4.|
  ---------------------|---------|----------|--------|---------|
  n=2m+1=3m+1= |--31----|--7, 37-|-13,43|--19----|
  n=2m+1=3m+2= |-11,41-|-17,47-|--23---|---29---|
  ------------------------------------------------------------
  求得了(7,7*)区间的全部素数。仿此下去可以求得任意大的数以内的全部素数。
  自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。古希腊数学家——欧几里得
  自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公因数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、合数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。
  在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。可以认为, 质数是整个数论的研究基石。
  到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,但是仍然没有找到素数产生的模式。德国数学家高斯集中前人的大成,写了一本书叫做《算术研究》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术研究》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和已知的方法进行了分类,还引进了新的方法。 高斯在这一著作中主要提出了同余理论, 并发现了著名的二次互反律, 被其誉之为“数论之酵母”。
  黎曼在研究ζ函数时,发现了复变函数的解析性质和素数分布之间的深刻联系, 由此将数论领进了分析的领域。这方面主要的代表人物还有英国著名数论学家哈代 、李特伍德、拉马努金等等。在国内,则有华罗庚、陈景润、王元等等。
  另一方面, 由于此前人们一直关注费马大定理的证明, 所以又发展出了代数数论的研究课题。 比如库莫提出了理想数的概念--可惜他当时忽略了代数扩环的唯一分解定理不一定成立)。高斯研究了复整数环的理论--即高斯整数。他在3次情形的费马猜想中也用了扩环的代数数论性质。 代数数论发展的一个里程碑,则是希尔伯特的《数论报告》。
  随着数学工具的不断深化, 数论开始和代数几何深刻联系起来, 最终发展称为当今最深刻的数学理论,诸如算术代数几何, 它们将许多此前的研究方法和研究观点最终统一起来, 从更加高的观点出发,进行研究和探讨。
  由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。

数论中的问题 编辑本段回目录


  数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题……

中国数论及专家 编辑本段回目录


  在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚闵嗣鹤柯召潘承洞等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“哥德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。
  实际上:
  一、陈景润证明的不是哥德巴赫猜想
  陈景润与邵品宗合著的【哥德巴赫猜想】第118页(辽宁教育出版社)写道:陈景润定理的“1+1”结果,通俗地讲是指:对于任何一个大偶数N,那么总可以找到奇素数P',P",或者P1,P2,P3,使得下列两式至少一式成立:“
  N=P'+P" (A)
  N=P1+P2*P3 (B)
  当然并不排除(A)(B)同时成立的情形,例如62=43+19,62=7+5X11。”
  众所周知,哥德巴赫猜想是指对于大于4的偶数(A)式成立,【1+2】是指对于大于10的偶数(B)式成立,
  两者是不同的两个命题,陈景润把两个毫不相关的命题混为一谈,并在申报奖项时偷换了概念(命题),陈景润也没有证明【1+2】,因为【1+2】比【1+1】难得多。
  二、陈景润使用了错误的推理形式
  陈采用的是相容选言推理的“肯定肯定式”:或者A,或者B,A,所以或者A或B,或A与B同时成立。 这是一种错误的推理形式,模棱两可,牵强附会,言之无物,什么也没有肯定,正如算命先生那样“:李大嫂分娩,或者生男孩,或者生女孩,或者同时生男又生女(多胎)”。无论如何都是对的,这种判断在认识论上称为不可证伪,而可证伪性是科学与伪科学的分界。相容选言推理只有一种正确形式。否定肯定式:或者A,或者B,非A,所以B。相容选言推理有两条规则:1,否认一部分选言肢,就必须肯定另一部分选言肢;2,肯定一部分选言肢却不能否定另一部份选言肢。可见对陈景润的认可表明中国数学会思维混乱,缺乏基本的逻辑训练。
  三、陈景润大量使用错误概念
  陈在论文中大量使用“充分大”和“殆素数”这两个含糊不清的概念。而科学概念的特征就是:精确性,专义性,稳定性,系统性,可检验性。而“充分大”,陈指10的50万次方,这是不可检验的数。殆素数是说很像素数,拿像与不像从事严肃的证明,这是小孩子的游戏。
  四、陈景润的结论不能算定理
  陈的结论采用的是特称(某些,一些),即某些N是(A),某些N是(B),就不能算定理,因为所有严格的科学的定理,定律都是以全称(所有,一切,全部,每个)命题形式表现出来,一个全称命题陈述一个给定类的所有元素之间的一种不变关系,适用于一种无穷大的类,它在任何时候都无区别的成立。而陈景润的结论,连概念都算不上。
  五、陈景润的工作严重违背认识规律
  在没有找到素数普遍公式之前,哥氏猜想是无法解决的,正如化圆为方取决于圆周率的超越性是否搞清,事物质的规定性决定量的规定性。(哥德巴赫猜想传奇)王晓明1999,3期《中华传奇》责任编辑陶慧洁)
所谓“争议”

   目前,我国有许多数学爱好者称自己证明了“哥德巴赫猜想”。其中一些人别有用心的散布“陈景润当年的证明是造假”“陈景润、王元、潘承洞偷换概念申报奖项”的谣言,歪曲事实,以达到炒作自己“成果”的目的。如被人不断转贴的《哥德巴赫猜想传奇》(王晓明1999,3期《中华传奇》),作者缺乏基本的数学知识,偷换概念严重,论证违反科学,如“陈在论文中大量使用“充分大”和“殆素数”这两个含糊不清的概念”,实际上,这两个概念数学界早已认同并普遍使用,而且陈景润证明中从没有“殆素数”的字样,“充分大”只用了一次;又如“陈的结论采用的是特称(某些,一些),即某些N是(A),所以根本不能算定理”,可以看出作者完全不理解“定理”的科学含义等。我们应该注意判断这些信息的来源和正确性。
  目前,国际数学界对“陈氏定理”的正确性没有任何争议,认为“陈氏定理”是哥德巴赫猜想研究的最佳成果。“陈氏定理”在外国很多数论书籍上被引用,著名的如英国的《筛法》、《素数求解问题》、《数论》、美国的《20世纪数学》等。
[编辑本段]数论的历史源头
  人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(注:现在,自然数的概念有了改变,包括正整数和0)
  对于整数可以施行加、减、乘、除四种运算,叫做四则运算。又叫算术,它与几何学是最古老的两门数学分支。传统的几何学已经枯萎,而传统的数论(即算术)还有大量的问题无法解决。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行,利用这一性质人们发明了大数密码体系。至今仍然关系着国家的安全。
  人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数浅薄地划分可分为两大类—奇数和偶数(通常被称为单数、双数);深刻地划分可以分为素数,合数,“1”等。两千多年来,数论学有一个重要的任务,就是寻找素数性质及分布规律,为此,花费了巨大的心血。 利用素数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。
  数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。
  数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
经管百科已经为您找到更多关于“数论”的相关信息,点击查看>>

附件列表

→如果您认为本词条还有待完善,请 编辑词条

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到: Favorites  

同义词: 暂无同义词

关于本词条的评论 (共0条)发表评论>>