阿罗不可能性定理(Arrow's Impossibility Theorem), 是指如果众多的社会成员具有不同的偏好,而社会又有 多种备选方案,那么在民主的制度下 不可能得到令所有的人都满意的结果。定理是由1972年度诺贝尔经济学奖获得者美国经济学家肯尼思·J·阿罗提出。
目录 [隐藏]
1 概述
2 发展
3 内容
4 操作实务
5 参考资料
阿罗不可能性定理-概述
阿罗不可能定理是由1972年诺贝尔经济学奖的获得者之一阿罗首先陈述和证明的。
1951年肯尼斯·约瑟夫·阿罗(Kenneth J.Arrow)在他的现在已经成为经济学经典著作的《社会选择与个人价值》一书中,采用数学的公理化方法对通行的投票选举方式能否保证产生出合乎大多数人意愿的领导者或者说“将每个个体表达的先后次序综合成整个群体的偏好次序”进行了研究。结果,他得出了一个惊人的结论:绝大多数情况下是——不可能的!更准确的表达则是:当至少有三名候选人和两位选民时,不存在满足阿罗公理的选举规则。或者也可以说是:随着候选人和选民的增加,“程序民主”必将越来越远离“实质民主”。从而给出了证明一个不可思议的定理:假如有一个非常民主的群体,或者说是一个希望在民主基础上作出自己的所有决策的社会,对它来说,群体中每一个成员的要求都是同等重要的。一般地,对于最应该做的事情,群体的每一个成员都有自己的偏好。为了决策,就要建立一个公正而一致的程序,能把个体的偏好结合起来,达成某种共识。这就要进一步假设群体中的每一个成员都能够按自己的偏好对所需要的各种选择进行排序,对所有这些排序的汇聚就是群体的排序了。
阿罗不可能性定理-发展
阿罗不可能定理的证明并不难,但是需要严格的数学逻辑思维。关于这个定理还有一段情节颇为曲折的故事。
阿罗在大学期间就迷上了数学逻辑:读四年级的时候, 波兰大逻辑学家塔斯基(Tarski) 到阿罗所在的大学讲了一年的关系演算, 阿罗在他那里接触到诸如传递性、排序等概念 在此之前. 阿罗对他所着迷的逻辑学还是全靠自学呢。
后来, 阿罗考上研究生.在哈罗德·霍特林(Harold Hotelling)的指导下攻读数理经济学 他发现,逻辑学在经济学中大有用武之地 就拿消费者的最优决策来说吧, 消费者从许多商品组合中选出其最偏好的组台、这正好与逻辑学上的排序概念吻台。又如厂商理论总是假设厂商追求利润最大化, 当考虑时间因素时, 因为将来的价格是未知的 厂商只能力图使基于期望价格的期望利润最大化。知道、现代经济中的企业一般是由许多股东所共同拥有100个股东对将来的价格可能有100种不同的期望,相应地根据期望利润进行诸如投资之类的决策时便有100种方案。那末, 问题如何解决呢,一个自然的办法是由股东(按其占有股份多少)进行投票表决, 得票最多的方案获胜 这又是一个排序问题阿罗所受的逻辑训练使他自然而然地对这种关系的传递性进行考察 结果轻而易举地举出了一个反例。
阿罗第一次对社会选择问题的严肃思考就这样成为他学习标准厂商理论的一个副产品不满足传递性的反例激起了阿罗的极大兴趣,但同时也成为他进一步研究的障碍 因为他觉得这个悖论素未谋面但又似曾相识。事实上这的确是一个十分古老的悖论, 是由法国政治哲学家、概率理论家贡多赛在1785年提出的 但是阿罗那时对贡多赛和其他原始材料一无所知, 于是暂时放弃了进一步的研究。这是1947年。
次年, 在芝加哥考尔斯(Cowles)经济研究委员会, 阿罗出于某种原因对选择政治学发生了浓厚的兴趣: 他发现在某些条件下,“少数服从多数”的确可以成为一个合理的投票规则。但是一个月后, 他在《政治经济学杂志》里发现布莱克(Black)的一篇文章已捷足先登, 这篇文章表达了同样的思想看来只好再一次半途而废了。阿罗没有继续研究下去其实还有另一层的原因,就是他一直以 严肃的 经济学研究为己任, 特别是致力于运用一般均衡理论来建立一个切实可行的模型作为经济计量分析的基础 他认为在除此以外的“旁门左遭’中深究下去会分散他的精力。
1949年夏天, 阿罗担任兰德公司(Rand)的顾问。这个为给美国空军提供咨询而建立起来的公司那时的研究范围十分广泛,包括当时尚属鲜为人知的对策论。职员中有个名叫赫尔墨([[]Helmer]]) 的哲学家试图将对策论应用于国家关系的研究, 但是有个问题令他感到十分棘手: 当将局中人诠释为国家时,尽管个人的偏好是足够清楚的, 但是由个人组成的集体的偏好是如何定义的呢?阿罗告诉他, 经济学家已经考虑过这个问题, 并且一个恰当的形式化描述已经由伯格森(Bergson)在1938年给出。伯格森用一个叫做社会福利函数的映射来描述将个人偏好汇集成为社会偏好的问题, 它将诸个人的效用组成的向量转化为一个社会效用 虽然伯格森的叙述是基于基数效用概念的, 但是阿罗告诉赫尔墨, 不难用序数效用概念加以重新表述。于是赫尔墨顺水推舟, 请阿罗为他写一个详细的说明当阿罗依嘱着手去做时, 他立即意识到这个问题跟两年来一直困扰着他的问题实际上是一样的。既然已经知道“少数服从多数“一般来说不能将个人的偏好汇集成社会的偏好, 阿罗猜测也许会有其他方法。几天的试探碰壁之后, 阿罗怀疑这个问题会有一个不可能性的结果。果然, 他很快就发现了这样一个结果; 几个星期以后, 他又对这个结果作进一步加强。
从1947年萌发胚芽到t950年开花结果,阿罗不可能定理的问世可谓一波三折, 千呼万唤始出来, 而且颇有点 无心插柳的意味。但是,正是在这无心背后的对科学锲而不舍的追求,才使逻辑学在社会科学这块他乡异壤开出一朵千古留芳的奇葩 这不能不说是耐人寻味的。
阿罗不可能性定理-内容
阿罗的不可能定理源自孔多塞的“投票悖论”,早在十八世纪法国思想家孔多赛就提出了著名的“投票悖论”:假设甲乙丙三人,面对ABC三个备选方案,有如图的偏好排序。
甲(a > b > c)
乙(b > c > a)
丙(c > a > b)
注:甲(a > b > c)代表——甲偏好a胜于b,又偏好b胜于c。
1.若取“a”、“b”对决,那么按照偏好次序排列如下:
甲(a > b )
乙(b > a )
丙(a > b )
社会次序偏好为(a > b )
2.若取“b”、“c”对决,那么按照偏好次序排列如下:
甲(b > c )
乙(b > c )
丙(c > b )
社会次序偏好为(b > c )
3.若取“a”、“c”对决,那么按照偏好次序排列如下:
甲(a > c )
乙(c > a )
丙(c > a )
社会次序偏好为(c > a )
于是得到三个社会偏好次序——(a > b )、(b > c )、(c > a ),其投票结果显示“社会偏好”有如下事实:社会偏好a胜于b、偏好b胜于c、偏好c胜于a。显而易见,这种所谓的“社会偏好次序”包含有内在的矛盾,即社会偏好a胜于c,而又认为a不如c!所以按照投票的大多数规则,不能得出合理的社会偏好次序。
阿罗不可能定理说明,依靠简单多数的投票原则,要在各种个人偏好中选择出一个共同一致的顺序,是不可能的。这样,一个合理的公共产品决定只能来自于一个可以胜任的公共权利机关,要想借助于投票过程来达到协调一致的集体选择结果,一般是不可能的。
阿罗不可能性定理-操作实务 多数原则是现代社会广泛接受的决策方法。洛克认为“根据自然和理性的法则,大多数具有全体的权力,因而大多数的行为被认为是全体的行为,也当然有决定权了”。但很多在自然法学家那里是想当然正确的东西在社会选择理论中是需要证明的。所谓社会选择,在数学上表达为一个建立在所有个人的偏好上的函数(或对应),该函数的性质代表了一定的价值规范,比如公民主权、全体性、匿名性、目标中性,帕累托最优性,无独裁性等。社会选择最重要的问题是,这些价值规范之间是否是逻辑上协调的。阿罗证明,不存在同时满足如下四个基本公理的社会选择函数:
①个人偏好的无限制性,即对一个社会可能存在的所有状态,任何逻辑上可能的个人偏好都不应当先验地被排除;
②帕累托原则,即一个方案对所有人是最优的意味着相对于社会偏好序也是最优的;
③非相关目标独立性,即关于一对社会目标的社会偏好序不受其它目标偏好序变化的影响;
④社会偏好的非独裁性。
目录 [隐藏]
1 概述
2 发展
3 内容
4 操作实务
5 参考资料
阿罗不可能性定理-概述
阿罗不可能定理是由1972年诺贝尔经济学奖的获得者之一阿罗首先陈述和证明的。
1951年肯尼斯·约瑟夫·阿罗(Kenneth J.Arrow)在他的现在已经成为经济学经典著作的《社会选择与个人价值》一书中,采用数学的公理化方法对通行的投票选举方式能否保证产生出合乎大多数人意愿的领导者或者说“将每个个体表达的先后次序综合成整个群体的偏好次序”进行了研究。结果,他得出了一个惊人的结论:绝大多数情况下是——不可能的!更准确的表达则是:当至少有三名候选人和两位选民时,不存在满足阿罗公理的选举规则。或者也可以说是:随着候选人和选民的增加,“程序民主”必将越来越远离“实质民主”。从而给出了证明一个不可思议的定理:假如有一个非常民主的群体,或者说是一个希望在民主基础上作出自己的所有决策的社会,对它来说,群体中每一个成员的要求都是同等重要的。一般地,对于最应该做的事情,群体的每一个成员都有自己的偏好。为了决策,就要建立一个公正而一致的程序,能把个体的偏好结合起来,达成某种共识。这就要进一步假设群体中的每一个成员都能够按自己的偏好对所需要的各种选择进行排序,对所有这些排序的汇聚就是群体的排序了。
阿罗不可能性定理-发展
阿罗不可能定理的证明并不难,但是需要严格的数学逻辑思维。关于这个定理还有一段情节颇为曲折的故事。
阿罗在大学期间就迷上了数学逻辑:读四年级的时候, 波兰大逻辑学家塔斯基(Tarski) 到阿罗所在的大学讲了一年的关系演算, 阿罗在他那里接触到诸如传递性、排序等概念 在此之前. 阿罗对他所着迷的逻辑学还是全靠自学呢。
后来, 阿罗考上研究生.在哈罗德·霍特林(Harold Hotelling)的指导下攻读数理经济学 他发现,逻辑学在经济学中大有用武之地 就拿消费者的最优决策来说吧, 消费者从许多商品组合中选出其最偏好的组台、这正好与逻辑学上的排序概念吻台。又如厂商理论总是假设厂商追求利润最大化, 当考虑时间因素时, 因为将来的价格是未知的 厂商只能力图使基于期望价格的期望利润最大化。知道、现代经济中的企业一般是由许多股东所共同拥有100个股东对将来的价格可能有100种不同的期望,相应地根据期望利润进行诸如投资之类的决策时便有100种方案。那末, 问题如何解决呢,一个自然的办法是由股东(按其占有股份多少)进行投票表决, 得票最多的方案获胜 这又是一个排序问题阿罗所受的逻辑训练使他自然而然地对这种关系的传递性进行考察 结果轻而易举地举出了一个反例。
阿罗第一次对社会选择问题的严肃思考就这样成为他学习标准厂商理论的一个副产品不满足传递性的反例激起了阿罗的极大兴趣,但同时也成为他进一步研究的障碍 因为他觉得这个悖论素未谋面但又似曾相识。事实上这的确是一个十分古老的悖论, 是由法国政治哲学家、概率理论家贡多赛在1785年提出的 但是阿罗那时对贡多赛和其他原始材料一无所知, 于是暂时放弃了进一步的研究。这是1947年。
次年, 在芝加哥考尔斯(Cowles)经济研究委员会, 阿罗出于某种原因对选择政治学发生了浓厚的兴趣: 他发现在某些条件下,“少数服从多数”的确可以成为一个合理的投票规则。但是一个月后, 他在《政治经济学杂志》里发现布莱克(Black)的一篇文章已捷足先登, 这篇文章表达了同样的思想看来只好再一次半途而废了。阿罗没有继续研究下去其实还有另一层的原因,就是他一直以 严肃的 经济学研究为己任, 特别是致力于运用一般均衡理论来建立一个切实可行的模型作为经济计量分析的基础 他认为在除此以外的“旁门左遭’中深究下去会分散他的精力。
1949年夏天, 阿罗担任兰德公司(Rand)的顾问。这个为给美国空军提供咨询而建立起来的公司那时的研究范围十分广泛,包括当时尚属鲜为人知的对策论。职员中有个名叫赫尔墨([[]Helmer]]) 的哲学家试图将对策论应用于国家关系的研究, 但是有个问题令他感到十分棘手: 当将局中人诠释为国家时,尽管个人的偏好是足够清楚的, 但是由个人组成的集体的偏好是如何定义的呢?阿罗告诉他, 经济学家已经考虑过这个问题, 并且一个恰当的形式化描述已经由伯格森(Bergson)在1938年给出。伯格森用一个叫做社会福利函数的映射来描述将个人偏好汇集成为社会偏好的问题, 它将诸个人的效用组成的向量转化为一个社会效用 虽然伯格森的叙述是基于基数效用概念的, 但是阿罗告诉赫尔墨, 不难用序数效用概念加以重新表述。于是赫尔墨顺水推舟, 请阿罗为他写一个详细的说明当阿罗依嘱着手去做时, 他立即意识到这个问题跟两年来一直困扰着他的问题实际上是一样的。既然已经知道“少数服从多数“一般来说不能将个人的偏好汇集成社会的偏好, 阿罗猜测也许会有其他方法。几天的试探碰壁之后, 阿罗怀疑这个问题会有一个不可能性的结果。果然, 他很快就发现了这样一个结果; 几个星期以后, 他又对这个结果作进一步加强。
从1947年萌发胚芽到t950年开花结果,阿罗不可能定理的问世可谓一波三折, 千呼万唤始出来, 而且颇有点 无心插柳的意味。但是,正是在这无心背后的对科学锲而不舍的追求,才使逻辑学在社会科学这块他乡异壤开出一朵千古留芳的奇葩 这不能不说是耐人寻味的。
阿罗不可能性定理-内容
阿罗的不可能定理源自孔多塞的“投票悖论”,早在十八世纪法国思想家孔多赛就提出了著名的“投票悖论”:假设甲乙丙三人,面对ABC三个备选方案,有如图的偏好排序。
甲(a > b > c)
乙(b > c > a)
丙(c > a > b)
注:甲(a > b > c)代表——甲偏好a胜于b,又偏好b胜于c。
1.若取“a”、“b”对决,那么按照偏好次序排列如下:
甲(a > b )
乙(b > a )
丙(a > b )
社会次序偏好为(a > b )
2.若取“b”、“c”对决,那么按照偏好次序排列如下:
甲(b > c )
乙(b > c )
丙(c > b )
社会次序偏好为(b > c )
3.若取“a”、“c”对决,那么按照偏好次序排列如下:
甲(a > c )
乙(c > a )
丙(c > a )
社会次序偏好为(c > a )
于是得到三个社会偏好次序——(a > b )、(b > c )、(c > a ),其投票结果显示“社会偏好”有如下事实:社会偏好a胜于b、偏好b胜于c、偏好c胜于a。显而易见,这种所谓的“社会偏好次序”包含有内在的矛盾,即社会偏好a胜于c,而又认为a不如c!所以按照投票的大多数规则,不能得出合理的社会偏好次序。
阿罗不可能定理说明,依靠简单多数的投票原则,要在各种个人偏好中选择出一个共同一致的顺序,是不可能的。这样,一个合理的公共产品决定只能来自于一个可以胜任的公共权利机关,要想借助于投票过程来达到协调一致的集体选择结果,一般是不可能的。
阿罗不可能性定理-操作实务 多数原则是现代社会广泛接受的决策方法。洛克认为“根据自然和理性的法则,大多数具有全体的权力,因而大多数的行为被认为是全体的行为,也当然有决定权了”。但很多在自然法学家那里是想当然正确的东西在社会选择理论中是需要证明的。所谓社会选择,在数学上表达为一个建立在所有个人的偏好上的函数(或对应),该函数的性质代表了一定的价值规范,比如公民主权、全体性、匿名性、目标中性,帕累托最优性,无独裁性等。社会选择最重要的问题是,这些价值规范之间是否是逻辑上协调的。阿罗证明,不存在同时满足如下四个基本公理的社会选择函数:
①个人偏好的无限制性,即对一个社会可能存在的所有状态,任何逻辑上可能的个人偏好都不应当先验地被排除;
②帕累托原则,即一个方案对所有人是最优的意味着相对于社会偏好序也是最优的;
③非相关目标独立性,即关于一对社会目标的社会偏好序不受其它目标偏好序变化的影响;
④社会偏好的非独裁性。