摘要:研究背景 在一元函数中,我们已经知道导数就是函数的变化率。对于二元函数我们同样要研究它的"变化率"。然而,由于自变量多了一个,情况就要复杂的多。 在xOy平面内,当动点由P(x0,y0)沿不[阅读全文]
摘要:不定积分 不定积分定义 设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分。 记作∫f(x)dx。 其中∫叫做[阅读全文]
摘要:众所周知,微积分的两大部分是微分与积分。微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数。所以,微分与积分互为逆运算。 积分的分类 实际上,积分还可以分为两部分。 第[阅读全文]
摘要:广义积分 定积分概念的推广。主要研究积分区间无穷和被积函数在有限区间上为无界的情形。前者称为无穷限广义积分,或称无穷积分;后者称为无界函数的广义积分,或称瑕积分,也被称为反常积分。 判定方法:[阅读全文]
摘要:概述 无穷级数是研究有次序的可数无穷个数或者函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对[阅读全文]
摘要:泰勒级数 泰勒级数的定义: 若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为: f(x)=f(x0)+f`( x0)(x- x0)+f``( x0)[阅读全文]
摘要:幂级数 函数项级数的概念 定义1 函数列 , 则称为函数项级数。 定义2取 ,则成为常数项级数, 若收敛,则称为的收敛点; 若发散,则称为的发散点。 定义3 函数项级数的收敛点[阅读全文]
摘要:傅里叶级数 傅里叶级数 Fourier series 一种特殊的三角级数。法国数学家J.-B.-J.傅里叶在研究偏微分方程的边值问题时提出。从而极大地推动了偏微分方程理论的发展。在中国,程[阅读全文]
摘要:级数 级数 series 将数列un的项 u1,u2,…,un,…依次用加号连接起来的函数。数项级数的简称。如:u1+u2+…+un+…,简写为∑un,un称为级数的通项,记Sm=∑un称之为[阅读全文]
摘要:数学术语 复数的概念 复数的定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解。因此将数集再次扩充,达到复数范围。 我们定义,形如z=a+bi的[阅读全文]
摘要:极限 在高等数学中,极限是一个重要的概念。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面[阅读全文]
摘要:曲线 什么是曲线? 按照经典的定义,从(a,b)到R3中的连续映射就是一条曲线,这相当于是说: (1.)R3中的曲线是一个一维空间的连续像,因此是一维的 . (2.)R3中的曲线可以通[阅读全文]
摘要:戈珀兹曲线 戈珀兹曲线法 是市场预测中的一种数学模型。 是以美国数学家杰明.戈珀兹命名的。适用于商品寿命周期中市场容量或普及率的预测。[阅读全文]
摘要:最优化计算方法 作者:蒋金山,何春雄,潘少华 ISBN:10位[7562327068] 13位[9787562327066] 出版社:华南理工大学出版社 出版日期:2008-1-1 定[阅读全文]
摘要:最优化理论 最优化理论(optimality theory)是指自然选择总是倾向于使动物最有效地传递其基因,因而也是最有效地从事各种活动,包括使它们活动时的时间分配和能量利用达到最佳状态。[阅读全文]
摘要:最优化方法 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经[阅读全文]
摘要:最优化原理 1951年美国数学家R.Bellman等人,根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。一些静态模型,只要人为地引进“时间”因素,分成[阅读全文]
摘要:二次规划 二次规划是非线形规划中一类特殊的数学规划问题,它的解是可以通过求解得到的。通常通过解其库恩—塔克条件(KT条件),获取一个KT条件的解称为KT对,其中与原问题的变量对应的部分称为KT点。[阅读全文]